PL EN
RESEARCH PAPER
Vibration in the System of the Birfield-Rzeppa Constant Velocity Universal Joint
 
 
More details
Hide details
1
Faculty of Mechatronics and Machine Building, Kielce University of Technology
 
These authors had equal contribution to this work
 
 
Submission date: 2023-11-05
 
 
Final revision date: 2023-12-12
 
 
Acceptance date: 2023-12-14
 
 
Publication date: 2023-12-28
 
 
Corresponding author
Zbigniew Dziopa   

Faculty of Mechatronics and Machine Building, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego, 25-314, Kielce, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;102(4):26-40
 
KEYWORDS
TOPICS
ABSTRACT
The paper presents the analysis of the motion of the intermediate element in the Birfield-Rzeppa joint. The joint is applied, among others, in automotive vehicles as an element of the drive shaft. The cage along with the balls form the intermediate element of the joint. The vibration of the element is activated during the drive shaft rotation. The vibration is enforced kinematically by the mechanism constraints. The constraints are determined by the assumed clutch geometry. The aim of the paper is to determine the variability course of the kinematic quantities characterizing the intermediate element motion of the Birfield-Rzeppa constant velocity universal joint. If the transmission function and the second position function of the clutch lead to the fluctuation of the angular velocity value and the angular acceleration of the cage along with the balls, then vibration is generated within the joint. The paper shows that drive shaft interference can be reduced by using a vibration reduction system. The article does not present an analysis aimed at reducing vibrations. Only the need for its use in the case of serious disturbances has been demonstrated.
REFERENCES (18)
1.
Cirelli M., Giannini O., Cera M., De Simoni F., Valentini P.P., Pennestrì E.: The mechanical efficiency of the Rzeppa transmission joint. Mechanism and Machine Theory. 2021, 164, 104418, DOI: 10.1016/ j.mechmachtheory.2021.104418.
 
2.
Crocker M.J.: Handbook of Noise and Vibration Control. John Wiley & Sons. Canada, 2007.
 
3.
De Silva C.W.: Vibration Fundamentals and Practice. Taylor & Francis Group. Boca Raton, London, New York, 2007.
 
4.
Gabryelewicz M.: Podwozia i nadwozia pojazdów samochodowych. WKiŁ. Warszawa, 2011.
 
5.
Feng H., Yin Z., Shangguan W-B., Li X., Luo Y.: Analysis and optimization for contact forces and transmission efficiency of an automotive ball joint. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020, 234(14), 3207–3223, DOI: 10.1177/0954407020952583.
 
6.
Hildebrandt W., Horst J., Rickell R.A.: New constant velocity fixed joints for front-wheel drivecars. ATZ Worldw. 2006, 108(2–4), DOI: 10.1007/BF03224822.
 
7.
Hildebrandt W., Schmahl C., Reith D. Gleichlaufgelenke für den modernen Triebstrang: Ein Technologieüberblick unter besonderer Berücksichtigung ihres Einflusses auf den Fahrzeug-Energieverbrauch. Mintzlaff, Strohe (Hg.): Triebstränge in Fahrzeugen: Pkw, Motorräder, Nutzfahrzeuge und mobile Arbeitsmaschinen. Haus der Technik Fachbuch, Bd. 2016, 140, 124–137, expert Verlag.
 
8.
Inman D.J.: Vibration with Control. John Wiley & Sons. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England 2006.
 
9.
Kimata K., Nagatani H., Imoto M., Kohara T.: Numerical Analyses and Experiments on the Characteristics of Ball-Type Constant-Velocity Joints. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing. 2004, 47(2), 746–754, DOI: 10.1299/jsmec.47.746.
 
10.
Pennestrì E., Rossi V., Salvini P., Valentini P.P., Pulvirenti F.: Review and kinematics of Rzeppa-type homokinetic joints with straight crossed tracks. Mechanism and Machine Theory. 2015, 90, 142–161, DOI: 10.1016/j.mechmachtheory.2015.03.009.
 
11.
Pennestrì E., Valentini P.P.: Kinematic design and multi-body analysis of Rzeppa pilot-lever joint. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2008, 222(2), 135–142, DOI: 10.1243/14644193JMBD131.
 
12.
Shi S., Chu H., Qiu X., Zhou Y.: Novel double-deck Rzeppa constant velocity joint with large operating angle: Mechanism configuration and kinematic characteristics analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2023, 105407, DOI: 10.1177/09544062231166799.
 
13.
Simpson M., Dolatabadi N., Rahmani R., Morris N., Jones D., Craig Ch.: Multibody Dynamics of Cross Groove Constant Velocity Ball Joints for High Performance Racing Applications. Mechanism and Machine Theory. 2023, 188, DOI: 10.1016/j.mechmachtheory.2023.105407.
 
14.
The materials made available by the Löbro company, Gleichlauf-Festgelenke und Verschiebegelenke. München, 2008.
 
15.
The materials made available by the Löbro company, Gleichlauf Gelenkwellen in Antrieben des Maschinenbaus. München 2008.
 
16.
Wang G., Qi Z., Zhang Z.: Kinematic Analysis and Simulation of the Steel Balls for Rzeppa Constant Velocity Joint. Chinese Journal of Mechanical Engineering. 2012, 48(3), 147–153, DOI: 10.3901/ JME.2012.03.147.
 
17.
Watanabe K., Matsuura T.: Kinematic Analyses of Rzeppa Constant Velocity Joint by Means of Bilaterally Symmetrical Circular-Arc-Bar Joint. The Proceedings of the Machine Design and Tribology Division meeting in JSME. 2006, 6, DOI: 10.1299/jsmemdt.2006.6.131.
 
18.
Valentini P.P.: Effects of the dimensional and geometrical tolerances on the kinematic and dynamic performances of the Rzeppa ball joint. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2014, 228(1), 37–49, DOI: 10.1177/0954407013505745.
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top