PRACA ORYGINALNA
Testing of the torsional stiffness of the passenger car frame
and its validation by means of finite element analysis
Więcej
Ukryj
1
Department of Engineering and Numerical Analysis, R&D Network Łukasiewicz
AUTOMOTIVE INDUSTRY INSTITUTE, Polska
2
Chief Designer/Design Department, FABRYKA SAMOCHODÓW OSOBOWYCH SYRENA W KUTNIE S.A., Polska
3
Plant Manager/Management Board, FABRYKA SAMOCHODÓW OSOBOWYCH SYRENA W KUTNIE S.A., Polska
Data nadesłania: 06-06-2019
Data ostatniej rewizji: 16-09-2019
Data akceptacji: 24-09-2019
Data publikacji: 30-09-2019
Autor do korespondencji
Krzysztof Andrzej Podkowski
Department of Engineering and Numerical Analysis, R&D Network Łukasiewicz
AUTOMOTIVE INDUSTRY INSTITUTE, Jagiellońska 55, 03-301, Warszawa, Polska
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;85(3):83-101
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The paper presents the results of the conducted tests of torsional stiffness of the VOSCO S106 passenger car, as well as the validation process of these tests by means of numerical analyzes using the FEM finite element method.
The most important element of the vehicle structure is the part of the spatial frame or the safety cage. Engine, brake system, fuel system and steering system, suspension as well as body and parts, their mounting nodes, hinges, locks, etc. are attached to the frame. The frame must therefore have adequate strength to protect the driver in the event of a tipover or impact. The frame is usually made of steel pipes with the prescribed dimensions and strength according to regulations. The torsional stiffness of the vehicle chassis has a significant influence on its driveability and therefore is an important parameter to measure. In this article, the torsional stiffness of the vehicle frame is calculated experimentally, which was then verified by finite element analysis (FEM) using the Altair HyperWorks program.
REFERENCJE (43)
1.
Anand A.: Torsional analysis of the chassis and its validation through Finite Element Analysis, India Altair Technology Conference. 2017.
2.
Barszcz Z., Podkowski K., Seńko J.: Analizy numeryczne MES ramy samochodu Syrenka S201. Autobusy : technika, ekspoloatacja, systemy transportowe). 2016, 6, 782-784.
3.
Boeman R.G., Johnson N. L.: Development of a Cost Competitive, Composite Intensive, Body-in-White. Development. 2002, 1, 1905-1912, DOI: 10.4271/2002-01-1905.
4.
Borkowski W., Konopka S., Prochowski L.: Dynamika maszyn. WNT. Warszawa 1996.
5.
Braess H.H., Seiffert U.: Handbook of Automotive Engineering, SAE, United States of America, 2005.
6.
Bretl J., Conti P.: Rigid Body Mass Properties from Test data, Proceedings of the 5th IMAC. 1987, 655-659.
7.
Brown, J.C., Robertson, A.J. Serpento, S.T. : Motor Vehicle Structures: Concepts and Fundamentals. Butterworth-Heinemann, Oxford, 2002.
8.
Cannon R.H.: Dynamika układów fizycznych. WNT. Warszawa 1973.
9.
Catbas F.N., Lenett M., Brown D.L.: Modal analysis of multiple reference impact test data for steel stringer bridges. Proceedings of the 15th IMAC 1997.
10.
Catbas F.N., Lenett M., Atkan M., Brown A.E.: Damage detection and condition assessment of Seymour bridge. Proceedings of the 16th IMAC 1998, p. 1694-1702.
11.
Claisse A., Featherston C.A., Holford K.M., Holt C.A., Manning D.: Measuring the Torsional Stiffness of a Space Frame Chassis using 3D Motion Capture Techniques, Applied Mechanics, and Materials, 2006, 423-428, DOI: 10.4028/www.scientific.net/AMM.3-4.423.
12.
Crocombe A., Sampe E., Somiotti A.: Chassis Torsional Stiffness: Analysis of the Influence on Vehicle Dynamics. SAE 2010 World Congress & Exhibition, 2010, DOI: 10.4271/2010-01-0094.
13.
Cuppens K., Sas P., Hermans L.: Evaluation of the FRF based substructuring and modal synthesis technique applied to vehicle FE data, Seminar on Modal Analysis 2001, Department of mechanical engineering division PMA KU Leuven Belgium.
14.
Deleener J., Mas P., Cremers L., Poland J.: Extraction of static car body stiffness from dynamic measurements. SAE Paper 2010-01-0228 2010, DOI: 10.4271/2010-01-0228.
15.
Demeester F., Van Brussel H.: Experimental compliance breakdown and real-time optical deformation measurement of flexible manipulators, PhD Dissertation KULeuven Departement Werktuigkunde Celestijnlaan 300B 3001 Heverlee (Belgium), 1992.
16.
Fregolent A., Sestieri A.: Identification of rigid body inertia properties from experimental data. Mechanical systems and signal processing. 1996, 10, 697-709, DOI: 10.1006/mssp.1996.0047.
17.
Griffiths D., Aubert A., Green E.R. Ding J.: A technique of relating vehicle structural modes to stiffness as determined in static determinate tests. SAE Paper. 2003-01-1716, DOI: 10.4271/2003-01-1716.
18.
Hartog J.P.D.: Advanced Strength of Materials, McGraw-Hill Book Co, New York, NY, 2014.
19.
Helsen J., Cremers L., Mas P., Sas P.: Global static and dynamic car body stiffness based on a single experimental modal analysis test. Proceedings of ISMA2010 Including USD2010.
20.
Hermans L., Mas P., Leurs W., Boucart N.: Estimation and use of residual modes in modal coupling calculations: a case study. Proceedings of the 18th IMAC. 2000, 930-936.
21.
Heylen W., Lammens S., Sas P.: Modal Analysis Theory and Testing, Katholieke Universiteit Leuven, Departement Werktuigkunde, Leuven 1997.
22.
Hibbeler, R.C.: Mechanics of Materials, Pearson Prentice Hall, Upper Saddle River, U.S.A, 2008.
23.
Instytut Pojazdów PW, Badanie sztywności skrętnej nadwozia (instrukcja do ćwiczenia).
24.
Lampert J.K., Law E.H., Thompson L.L.: Design of a Twist Fixture to Measure the Torsional Stiffness of a Winston Cup Chassis. Motorsports Engineering Conference and Exposition. 2000, DOI: 10.4271/983054.
25.
Law E.H., Raju S., Thompson L.L.: Design of a Winston Cup Chassis for Torsional Stiffness. Motorsports Engineering Conference and Exposition. 1999, DOI: 10.4271/983053.
26.
Law E.H., Raju S., Soni P.H., Thompson L.L.: The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car. Motorsports Engineering Conference Proceedings. 1998.
27.
Gokhale N. S., Thite A.N.: Practical Finite Element Analysis, Altair 2015.
28.
Pawłowski J.: Nadwozia samochodowe. WKiŁ Warszawa 1964.
29.
Pawłowski J.: Nadwozia samochodowe. Funkcja użytkowa i struktura nośna. WKiŁ, Warszawa 1978.
30.
Barszcz Z., Podkowski K., Seńko J.: FEM (Finite Element Method) Numeric Analyses of the Syrenka S201 Car Model. Proceedings of the 13th International Scientific Conference: Computer Aided Engineering, Lecture Notes in Mechanical Engineering, DOI 10.1007/978-3-319-50938-9_43.
31.
Rediers B., Yang B., Juneja V.: Static and dynamic stiffness-One test both results, Proceedings of the 16th IMAC 1998.
32.
Reichelt M.: Identification schwach gedämpfter systeme am beispiel von Pkwkarosserien Doktorarbeit BMW AG 2003-Fakultät für Maschinenbau der Technischen Universität Chemnitz.
33.
Reński A.: Zastosowanie pomiaru sztywności skrętnej nadwozia do oceny jego jakości. Zeszyty Naukowe Instytutu Pojazdów. Politechnika Warszawska 2002, 4(47), 35-42.
34.
George A.R., Riley W.B.: Design, Analysis and Testing of a Formula SAE Car Chassis. SAE Motorsports Engineering Conference and Exhibition. 2002, DOI: 10.4271/2002-01-3300.
35.
Rusiński E.: Metoda elementów skończonych. WKiŁ, Warszawa 1994.
36.
Rusiński E., Moczko P., Czmochowski J.: Numerical and experimental analysis of a mine’s loader boom crack. Automation In Construction. 2006, 17, 271-277. DOI: 10.1016/j.autcon.2007.05.010.
37.
Rusiński E., Kopczyński A., Czmochowski J.: Tests of thin-walled beams joined by spot welding. Journal of Materials Processing Technology. 2004, 157/158, 405-409, DOI: 10.1016/j.jmatprotec.2004.09.063.
38.
Seidel T.: Rozwój konstrukcji nadwozi.
39.
Tebby S., Esmailzadeh E., Barari A.: Methods to Determine Torsion Stiffness in an Automotive Chassis. Computer-Aided Design & Applications. 2011, 67-75, DOI: 10.3722/cadaps.2011.PACE.67-75.
40.
Thompson L. L., Lampert J. K., Law E. H.: Design of a Twist Fixture to Measure the Torsional Stiffness of a Winston Cup Chassis. SAE Paper 983054.
41.
Tuijtelaars L., van der Tas R.: Statics from dynamics. Masterthesis Hogeschool van Arnhem en Nijmegen 2009.
42.
Zienkiewicz O.C., Taylor R.L.: The Finite Element Method. Fourth Edition, McGraw-Hill, Berkshire, England, 1991, 1-2.
43.
Żółtowski B.: Badania dynamiki maszyn. Markar-BZ. Bydgoszcz 2002.
CYTOWANIA (5):
1.
Frame Optimization Design Based on Improved Grey Relational Analysis
Shuang Wang, Dengfeng Wang, Zhanjin Ning, Zhongjian Hu
Journal of Shanghai Jiaotong University (Science)
2.
Vehicle wheel positioning innovation on a machine for measuring the contact parameters between a tyre and the road
Petr Jilek
The Archives of Automotive Engineering – Archiwum Motoryzacji
3.
Structural analysis of electric motorcycle battery SWAP outlet using finite element simulation
Alief Wikarta, Rizkhi Nurirawan, Agam Wiranata Trisnakusuma, Dedy Zulhidayat Noor, Bambang Sampoerno
PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY, AND INDUSTRIAL APPLICATIONS 2021 (8th ICETIA 2021): Engineering, Environment, and Health: Exploring the Opportunities for the Future
4.
Special features of determining the loads on the passenger car frame with closed center sill
Sergii Panchenko, Glib Vatulia, Oleksij Fomin, Alyona Lovska, Dmytro Skurikhin, Volodymyr Nerubatskyi, Vladislav Skurikhin
14TH INTERNATIONAL SCIENTIFIC CONFERENCE ON AERONAUTICS, AUTOMOTIVE, AND RAILWAY ENGINEERING AND TECHNOLOGIES
5.
Evaluation of the strength of the truck tractor’s frame under emergency braking conditions
Stanislav Kovalchuk, Oleksii Goryk, Oleksii Burlaka, Anton Kelemesh
The Archives of Automotive Engineering – Archiwum Motoryzacji