PL EN
RESEARCH PAPER
Selected issues related to the research on a hybrid three-wheeler for the disabled
 
More details
Hide details
1
Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering
 
2
Automotive Industry Institute (PIMOT), Analytical Laboratory
 
 
Publication date: 2018-06-29
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2018;80(2):95-113
 
KEYWORDS
ABSTRACT
The article concerns the performing of selected experimental and simulation tests carried out when engineering a motor vehicle for the disabled, provisionally named PIMOTEK. The project was subsidized by the State Fund for Rehabilitation of Disabled Persons (PFRON) within a Research and Analysis Programme. The vehicle, engineered at the Automotive Industry Institute, has a three-wheeled running gear and a load-bearing structure that enables tilting of the vehicle together with its driver in relation to the road surface and rear vehicle axle. The solution that enables the tilting of vehicle body is well known from the Gyro series of Honda scooters. However, it was modified with respect to the needs of users with impaired body balance abilities. A unique solution incorporated in PIMOTEK is a hybrid internal combustion and electric powertrain mounted on the rear vehicle axle. The electric drive system simultaneously solves the problem of reversing, which is indispensable for disabled persons. The three‑wheeler is provided with a lift-and-swivel seat, which makes the transfer between the seat and the wheelchair easier for a disabled person and, at the same time, enables the disabled person to put the wheelchair in the luggage compartment by himself/herself. The innovativeness of the vehicle also manifests itself in the modern lines of the vehicle body, masking the features of the vehicle as an invalid carriage.
 
REFERENCES (27)
1.
Dhruv U Panchal. Two and Three Wheeler Technology. PHI Learning Pvt. Ltd., Delhi 2015.
 
2.
Pawłowski J. Nadwozia samochodowe (Motor vehicle bodies). WKiŁ. Warszawa 1978.
 
3.
Danielsson O, Cocana A G. Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars. Göteborg 2015.
 
4.
PN-90/B-03200 Konstrukcje stalowe. Obliczenia statyczne i projektowanie (Steel structures. Structural analysis and designing).
 
5.
Niezgodziński M E, Niezgodziński T. Wzory, wykresy i tablice wytrzymałościowe (Formulas, graphs, and material strength tables). Warszawa. WNT 1996.
 
6.
Niezgodziński M E, Niezgodziński T. Zadania z wytrzymałości materiałów (Problems in strength of materials). Warszawa 1997.
 
7.
The world’s most fuel efficient vehicle. Design and development of Paccar II. Zürich/Singen, 2007.
 
8.
Wojtyra M, Frączek J. Metoda układów wieloczłonowych w dynamice mechanizmów. Ćwiczenia z zastosowaniem programu ADAMS (Multibody systems method in the dynamics of mechanisms). Warszawa, 2007.
 
9.
Frączek J, Wojtyra M. Kinematyka układów wieloczłonowych. Metody obliczeniowe (Kinematics of multi-body systems. Computation methods). Warszawa, 2008.
 
10.
Reński A. Bezpieczeństwo czynne samochodu. Zawieszenia oraz układy hamulcowe i kierownicze (Active safety of the motor vehicle. Suspension, braking, and steering systems). Warszawa, 2011.
 
11.
Reimpell J, Betzler J. Podwozia samochodów. Podstawy konstrukcji (Motor vehicle chassis. The fundamentals of designing). 2nd issue. Warszawa, 2001.
 
12.
Kurnik W. Wykłady z mechaniki ogólnej (Lectures in general mechanics). Warszawa, 2012.
 
13.
Sikorski J. Amortyzatory pojazdów samochodowych. Budowa. Naprawa. Badania (Shock absorbers of motor vehicles. Construction, repairs, and testing). 2nd issue. Warszawa, 1984.
 
14.
Gillespie T D. Fundamentals of vehicle dynamics. Warrendale.
 
15.
Crolla A D. Automotive engineering. Powertrain, chassis system and vehicle body. Oxford, 2009.
 
16.
Hodkinson R, Fenton J. Lightweight electric/hybrid vehicle design. Oxford, 2001.
 
17.
Banerjee S. Dynamics for engineers. Chichester, 2005.
 
18.
Happian-Smith J. An introduction to modern vehicle design. Oxford, 2002.
 
19.
Blundell M, Harty D. Multibody systems approach to vehicle dynamics. New York, 2004.
 
20.
Dixon J C. Suspension geometry and computation. Chichester, 2009.
 
21.
Jazar R N. Vehicle dynamics: theory and applications. New York, 2008.
 
22.
 
23.
http://www.3wheelers.com/ (cited: Dec. 2015).
 
24.
 
25.
 
26.
 
27.
 
 
CITATIONS (1):
1.
A three-wheeled vehicle for the disabled people
K Stańko-Pająk, B Bursa, J Seńko, T Detka, S Korczak, R Nowak, K Popiołek, J Lisiecki, A Paczkowski
IOP Conference Series: Materials Science and Engineering
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top