PL EN
Rubber/Foam/Composite Overlay onto Guide B of Barrier Located on Road Bend
 
More details
Hide details
1
Military University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science
 
2
State Vocational Academy
 
3
ROMA Co. Ltd.
 
 
Publication date: 2015-09-29
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2015;69(3):65-86
 
ABSTRACT
The paper examines the SP-05/2 outer barrier of the N2-W4-A class (the producer: Stalprodukt JSC, Bochnia) with the B-type guide bar, located on a horizontal arch to an accelerated traffic main road (Polish code: GP), with the allowable radius of the road axis belonging to the range of 140–220 m. In order to ensure accepting the TB11 crash test, a rubber/foam/composite overlay has been designed, which was combined with the B guide bar with screw connectors using only the empty holes in the guide axis, at 2.00 m intervals. The overlay is flame retardant, resistant to weathering and required chemical effects, increases flexibility and strength of the barrier, reduces vehicle–barrier friction, and its estimated durability is 30 years.  The study develops a method for numerical modelling and simulation of the unmodified (a straight barrier) and modified (a barrier in a horizontal concave arch) TB11 crash test, without and with the overlay, including deformable joints with limited load capacity, contact with friction, tire pressure, posts embedded in deformable subsoil, gravity load, damping, et al. TB11 virtual crash tests have been conducted for the four above-mentioned barrier design systems. The Geo Metro (Suzuki Swift) car model, corrected respectively, has been taken from the public library developed by the National Crash Analysis Center, USA. Crash tests were simulated using the non-linear explicit finite element code LS-Dyna v971. The results include all the collision parameters required by the EN 1317 standard. It has been proved that the SP-05/2 barrier with the overlay, located on GP road bends, provides acceptance of the TB11 crash test. 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top