PL EN
PRACA ORYGINALNA
Reconstruction of traffic situations from digital video-recording using method of volumetric kinetic mapping
,
 
,
 
 
 
Więcej
Ukryj
1
Institute of Forensic Research and Education, University of Žilina, Slovak Republic
 
2
Faculty of Operation and Economics of Transport and Communication, University of Žilina, Slovak Republic
 
 
Data nadesłania: 27-05-2019
 
 
Data ostatniej rewizji: 19-06-2019
 
 
Data akceptacji: 24-06-2019
 
 
Data publikacji: 28-06-2019
 
 
Autor do korespondencji
Eduard Kolla   

Institute of Forensic Research and Education, University of Žilina, Ulica 1. mája 32, 01001, Žilina, Slovak Republic
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;84(2):147-170
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
In the past the traffic accident reconstruction was based in principle only on indirect methods that use accident marks and witness reports. These data were then used within backward reconstruction of event for determination of motion status of accident participants and expression of desirable quantities as are initial velocities, impact velocities, distances travelled or temporal conditions. These methods and their accuracy are dependent on the width of intervals of input quantities or on limited possibilities for motion synchronization between numerable participants of road traffic accidents. Existence of footage from CCTV cameras that captures traffic situations presents very valuable source of information about these accidents. The goal of the article is proposal of a volumetric kinetic mapping (VKM) method of accident reconstruction from CCTV footage. The method is based on synthesis of videoediting, videoanalysis and kinetic simulation using dedicated software for accident reconstruction. The method was furthermore validated for speed-time and distance-time variables by means of experimental test runs and by subsequent application of the method in the reconstruction of these tests using PC-Crash simulation software and two videoediting software packages. Results of the reconstructions of validation runs using VKM method were then verified by comparing them to the measured data from Corrsys Datron Microstar measuring system.
REFERENCJE (21)
1.
Ball J., Kittel M., Buss T., Weiss G.: Analysis of Video Event Recorder Data Used for Accident Reconstruction. SAE Technical Paper 2014-01-2388, 2014, DOI: 10.4271/2014-01-2388.
 
2.
Coleman C., Tandy D., Colborn J., Ault N.: Applying Camera Matching Methods to Laser Scanned Three Dimensional Scene Data with Comparisons to Other Methods. SAE Technical Paper 2015-01-1416, 2015, DOI: 10.4271/2015-01-1416.
 
3.
Crouch M., Cash S.: Video Analysis in Collision Reconstruction. Independent Publishing Network, ISBN 978-1-78808-930-2, 201.
 
4.
Edelman G., Bijhold J.: Tracking people and cars using 3D modelling and CCTV. Forensic Science International. 2010, 202, 26-35, DOI: 10.1016/j.forsciint.2010.04.021.
 
5.
Del Cesta F., Del Cesta A.: Using CCTV data in the analysis of real vehicle accidents: a laser scanner approach. 26th Annual Congress of the EVU:proceedings, Haarlem, Netherlands, 2017, 79-91, ISBN 978-90-903-0511-0.
 
6.
Han I.: Car speed estimation on cross-ratio using video data of car-mounted camera (black box). Forensic Science International. 2016, 269, 89-96, DOI: 10.1016/j.forsciint.2016.11.014.
 
7.
Hoogeboom B., Alberink I.: Measurement Uncertainty When Estimating the Velocity of an Allegedly Speeding Vehicle from Images. Journal of Forensic Sciences. 2010, 55 (5), 1347-1351, DOI: 10.1111/j.1556-4029.2010.01412.x.
 
8.
Hoogeboom B., Vrijdag D.: Estimating the speed of a car from video images. 26th Annual Congress of the EVU:proceedings, Haarlem, Netherlands, 2017, 59-66, ISBN 978-90-903-0511-0.
 
9.
Jiao P., Miao Q., Zhang M., Zhao W.: A virtual reality method for digitally reconstructing traffic accidents from videos or still images. Forensic Science International. 2018, 292, 176-180, DOI: 10.1016/j.forsciint.2018.09.019.
 
10.
Kataoka H., Suzuki T., Oikawa S., Matsui Y., Satoh Y.: Drive Video Analysis for the Detection of Traffic Near-Miss Incidents. IEEE International Conference on Robotics and Automation (ICRA), 2018, arXiv:1804.02555.
 
11.
Kim J.H., Oh W.T., Choi J.H, Park J.C.: Reliability verification of vehicle speed estimate method in forensic videos. Forensic Science International. 2018, 287, 195-206, DOI: 10.1016/j.forsciint.2018.04.002.
 
12.
Kubjatko T., Görtz M., Macurová Ľ., Ballay M.: Synergy of forensic and security engineering in relation to the model of deformation energies on vehicles after traffic accidents. 22nd International Scientific Conference Transport means 2018: proceedings, Kaunas, Lithuania, 2018, 1342-1348, ISSN 1822-296X.
 
13.
Osman M.R, Tahar K.N.: 3D accident reconstruction using low-cost imaging technique. Advances in Engineering Software. 2016, 100, 231-237, DOI: 10.1016/j.advengsoft.2016.07.007.
 
14.
Wach W.: Simulation of Vehicle Accidents using PC-Crash. Institute of Forensic Research Publishers, ISBN 83-87425-68-0, 2011.
 
15.
Wong T.W., Tao C.H., Cheng Y.K., Wong K.H., Tam C.N.: Application of cross-ratio in traffic accident reconstruction. Forensic Science International. 2014, 235, 19-23, DOI: 10.1016/j.forsciint.2013.11.012.
 
16.
Zhao Y., Ito D., Mizuno K.: AEB effectiveness evaluation based on car-to-cyclist accident reconstructions using video of drive recorder. Traffic Injury Prevention. 2019, 20(1), 100-106, DOI: 10.1080/15389588.2018.1533247.
 
17.
PC-Crash software: http://www.dsd.at (accessed on 03.09.2018).
 
18.
HitFilm Express software: https://fxhome.com/hitfilm-exp... (accessed on 16.05.2018).
 
19.
GoPro Hero 4 Black: https://gopro.com/help/HERO4-B... (accessed on 23.08.2018).
 
20.
Corrsys Datron Microstar: http://www.corrsys-datron.com/... (accessed on 22.06.2008).
 
21.
proDAD Defishr V1 software: http://www.prodad.com/Handycam... (accessed on 01.08.2018).
 
 
CYTOWANIA (8):
1.
Errors in controlling cars cause tragic accidents involving motorcyclists
Rafał Wrona, Iwona Rybicka
Open Engineering
 
2.
New developments on EDR (Event Data Recorder) for automated vehicles
Klaus Böhm, Tibor Kubjatko, Daniel Paula, Hans-Georg Schweiger
Open Engineering
 
3.
A Study on the Cases of Applying 3D Modeling for Forensic Video
Byoung-Chul Kim
Journal of Digital Contents Society
 
4.
Causality of accidents at railway-crossings in Slovakia and its prevention
Peter Blaho, Lumir Peceny, Jozef Gasparik
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
5.
Effective Placement of Video Surveillance System Using 3D Scanning Technology for Traffic Safety
Veronika Adamová, Martin Boroš
Transportation Research Procedia
 
6.
Probability of secure return of semi-trailers to the domicicle of the carrier with regard to transport costs
Juraj Hammer, Milos Poliak, Marek Jaskiewicz, Zdenek Riha, Borna Abramovic
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
7.
Issues of Vehicle Digital Forensics
Dagmar Kopencova, Roman Rak
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
8.
Design and evaluation of a new intersection model to minimize congestions using VISSIM software
Jana Fabianova, Peter Michalik, Jaroslava Janekova, Michal Fabian
Open Engineering
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top