PL EN
PRACA ORYGINALNA
Power affects to the sound pressure of a four-stroke engine
 
Więcej
Ukryj
1
Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, Lithuania
 
2
Institute of Mechanical Science, Vilnius Gediminas Technical University, Lithuania
 
3
Department of Automobile Engineering, Vilnius Gediminas Technical University, Lithuania
 
 
Data nadesłania: 13-11-2019
 
 
Data ostatniej rewizji: 17-12-2019
 
 
Data akceptacji: 18-12-2019
 
 
Data publikacji: 23-12-2019
 
 
Autor do korespondencji
Jonas Matijošius   

Institute of Mechanical Science, Vilnius Gediminas Technical University, Lithuania
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;86(4):143-150
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The noise generated by the four-stroke S320 Andoria internal combustion engine is a complex field of study because the total sound pressure is the sum of the sound pressures produced by each engine component. The noise level and sound frequency of diesel engines used in agricultural machinery are highly dependent on fuel combustion. The standard diesel fuel conforming to EN 115 was used in the tests. Sound pressure was measured with the Bruel & Kjear equipment. Investigations show the dynamics of the dynamic parameters of the four-stroke engine, which must be evaluated when operating agricultural machinery. Experimental research of power influence on sound pressure of four-stroke diesel engine was performed. The dependence of the sound pressure level on the variation of the motor power was determined. Studies have shown that as the engine power increases from 2.63 to 9.48 kW, the sound pressure standard deviation increases by about 0.041 Pa.
 
REFERENCJE (21)
1.
Andoria Diesel engines S320, S321 2019. Accses: www.andoria-mot.com.pl (watched 2019-02-23).
 
2.
Badaoui M.E., Danière J., Guillet F., Servière C.: Separation of combustion noise and piston-slap in diesel engine—Part I: Separation of combustion noise and piston-slap in diesel engine by cyclic Wiener filtering. Mechanical Systems and Signal Processing. 2005, 19, 1209–1217, DOI:10.1016/j.ymssp.2005.08.010.
 
3.
Drossel W.G., Bucht A., Hochmuth C., Schubert A., Stoll A., Schneider J., et al.: High Performance of Machining Processes by Applying Adaptronic Systems. Procedia CIRP. 2014, 14, 500–505, DOI:10.1016/j.procir.2014.03.072.
 
4.
Duvigneau F., Liefold S., Höchstetter M., Verhey J.L., Gabbert U.: Analysis of simulated engine sounds using a psychoacoustic model. Journal of Sound and Vibration. 2016, 366, 544–555, DOI:10.1016/j.jsv.2015.11.034.
 
5.
Ganapathy T., Gakkhar R.P., Murugesan K.: Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine. Applied Energy. 2011, 88, 4376–4386, DOI:10.1016/j.apenergy.2011.05.016.
 
6.
Juknelevičius R.: Research on biodiesel and hydrogen co-combustion process in compression ignition engine. Vilnius, Lithuania: Vilnius Gediminas Technical University. 2019, DOI:10.20334/2019-023-M.
 
7.
Jamrozik A., Tutak W., Pyrc M., Gruca M., Kočiško M.: Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel. 2018, 221, 329–345, DOI:10.1016/j.fuel.2018.02.098.
 
8.
Kilikevicius A., Jurevicius M., Skeivalas J., Kilikeviciene K., Turla V.: Vibrational analysis of angle measurement comparator. Signal, Image and Video Processing. 2016, 10, 1287–1294, DOI:10.1007/s11760-016-0956-8.
 
9.
Liu H., Zhang J., Guo P., Bi F., Yu H., Ni G.: Sound quality prediction for engine-radiated noise. Mechanical Systems and Signal Processing. 2015, 56–57, 277–287, DOI:10.1016/j.ymssp.2014.10.005.
 
10.
Mao J., Hao Z., Jing G., Zheng X., Liu C.: Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Applied Acoustics. 2013, 74, 150–159, DOI:10.1016/j.apacoust.2012.07.005.
 
11.
de Oliveira L.P.R., Janssens K., Gajdatsy P., Van der Auweraer H., Varoto P.S., Sas P., et al.: Active sound quality control of engine induced cavity noise. Mechanical Systems and Signal Processing. 2009, 23, 476–488, DOI:10.1016/j.ymssp.2008.04.005.
 
12.
Park D., Park S., Kim W., Rhiu I., Yun M.H.: A comparative study on subjective feeling of engine acceleration sound by automobile types. International Journal of Industrial Ergonomics. 2019, 74, 102843, DOI:10.1016/j.ergon.2019.102843 (1-7).
 
13.
Pruvost L., Leclère Q., Parizet E. Diesel engine combustion and mechanical noise separation using an improved spectrofilter. Mechanical Systems and Signal Processing. 2009, 23, 2072–2087, DOI:10.1016/j.ymssp.2009.04.001.
 
14.
Qiu S., Yuan Z., Fan R., Liu J.: Effects of exhaust manifold with different structures on sound order distribution in exhaust system of four-cylinder engine. Applied Acoustics. 2019, 145, 176–183, DOI:10.1016/j.apacoust.2018.06.021.
 
15.
Redel-Macías M.D., Pinzi S., Leiva D., Cubero-Atienza A.J., Dorado M.P.: Air and noise pollution of a diesel engine fueled with olive pomace oil methyl ester and petrodiesel blends. Fuel. 2012, 95, 615–621, DOI:10.1016/j.fuel.2011.11.003.
 
16.
Siavash N., Najafi G., Hasanbeigi R., Ghobadian B.: Acoustic Analysis of a Single Cylinder Diesel Engine Using Biodiesel Fuel Blends. Energy Procedia. 2015, 75, 893–899, DOI:10.1016/j.egypro.2015.07.217.
 
17.
Sellerbeck P., Nettelbeck C., Heinrichs R., Abels T.: Improving Diesel Sound Quality on Engine Level and Vehicle Level - A Holistic Approach. SAE 2007 Noise and Vibration Conference and Exhibition. 2007, DOI:10.4271/2007-01-2372.
 
18.
Tutak W., Jamrozik A., Pyrc M., Sobiepański M.: A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine. Applied Thermal Engineering. 2017, 117, 155–163, DOI:10.1016/j.applthermaleng.2017.02.029.
 
19.
Yao J., Xiang Y., Qian S., Li S., Wu S.: Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method. Mechanical Systems and Signal Processing. 2017, 96, 303–320, DOI:10.1016/j.ymssp.2017.04.027.
 
20.
Yun D.U., Lee S.K.: Objective evaluation of the knocking sound of a diesel engine considering the temporal and frequency masking effect simultaneously. Journal of Sound and Vibration. 2017, 397, 282–297, DOI:10.1016/j.jsv.2017.03.005.
 
21.
Zoldy M., Hollo A., Thernesz A.: Butanol as a Diesel Extender Option for Internal Combustion Engines. SAE 2010 World Congress & Exhibition. 2010, DOI:10.4271/2010-01-0481.
 
 
CYTOWANIA (2):
1.
Short-term imputation of missing sound level data using selected computational intelligence methods
Michal Kekez, Leszek Radziszewski, Andrzej Bakowski, Dariusz Kurczynski
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
2.
The analysis of the relations between road vehicle traffic parameters and the number of road accidents in subsequent hours of the day - a case study
Andrzej Bakowski, Rafal Jurecki, Leszek Radziszewski, Pawel Swietlik
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top