PL EN
REVIEW PAPER
Performance investigation of hybrid photovoltaic thermal-heat with mini-channels for application in electric vehicles
 
 
More details
Hide details
1
Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Polska
 
 
Submission date: 2023-03-21
 
 
Final revision date: 2023-05-24
 
 
Acceptance date: 2023-06-01
 
 
Publication date: 2023-06-30
 
 
Corresponding author
Strąk Dariusz   

Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Kielce, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;100(2):1-26
 
KEYWORDS
TOPICS
ABSTRACT
The first autonomous car was developed in the 1980s, but it wasn't until the early 2010s that the technology began to gain significant attention and investment. In 2010, Google began testing self-driving cars on public roads, and since then, many other companies have joined the race to develop fully autonomous vehicles. Hybrid PVT (Photovoltaic Thermal) heat exchangers cooled with mini-channels find application in autonomous vehicles as a solution that enables efficient cooling of the vehicle's electronics and batteries. The solution involves using photovoltaic panels to generate electricity and removing the heat produced during the process using mini-channels is removed by mini-channels. Hybrid PVT heat exchangers cooled with mini-channels can help maintain appropriate temperatures inside autonomous vehicles that generate large amounts of heat from electronic systems and sensors. The setup can improve the performance and reliability of autonomous systems, increase energy efficiency, and reduce energy demands. The experimental setup includes two parallel mini-channel systems separated by a smooth copper plate. The study aims to determine local heat-transfer coefficients, with a cooled solar cell efficiency range of 10% to 14% compared to other research. The cooled PV temperature range achieved was from 19.6 to 22.4 degrees Celsius, which is favorable for photovoltaic panels' operation under approximate light intensity for Poland's latitude. Heat-transfer from hot surfaces to cold fluids is analyzed during single-phase convection using two calculation methods: one-dimensional and numerical simulations using Simcenter STAR CCM+. Cooling photovoltaic modules is critical for the photovoltaic and autonomous vehicle systems sector, making this research significant both theoretically and practically. The research and methods presented in the article on mini-channel cooling of photovoltaic systems and autonomous vehicle systems are innovative at a global scale, and are crucial for further development of sustainable energy systems and reduction of greenhouse gas emissions.
REFERENCES (38)
1.
Akbarzadeh A., Wadowski T.: Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Applied Thermal Engineering. 1996, 16(1), 81–87, DOI: 10.1016/1359-4311(95)00012-3.
 
2.
Bai Y., Chow T., Menezo C., Dupeyrat P.: Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application. Hindawi Publishing Corporation, International Journal of Photoenergy. 2012, 2012, 265838, DOI: 10.1155/2012/265838.
 
3.
Bergene T., Løvvik O.M.: Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy. 1995, 55(6), 453–462, DOI: 10.1016/0038-092X(95)00072-Y.
 
4.
Bielski J.: Wprowadzenie do inżynierskich zastosowań metody elementów skończonych. (Introduction to engineering applications of the finite element method). Politechnika Krakowska im. Tadeusza Kościuszki, Kraków. 2010, 122.
 
5.
Bigorajski J., Chwieduk, D.: Analysis of a micro photovoltaic/thermal – PV/T system operation in moderate climate, Renewable Energy. 2019, 137, 127–136, DOI: 10.1016/j.renene.2018.01.116.
 
6.
Chow T.T.: A review on photovoltaic/thermal hybrid solar technology. Applied Energy. 2010, 87(2), 365–379, DOI: 10.1016/j.apenergy.2009.06.037.
 
7.
Chow T.T., Tiwari G.N., Menezo C.: Hybrid Solar: A review on photovoltaic and thermal power integration. International Journal of Photoenergy. 2012, 2012, 307287, DOI: 10.1155/2012/307287.
 
8.
Dang T., Teng J.T.: The effects of configurations on the performance of microchannel counter-flow heat exchangers-An experimental study. Applied Thermal Engineering. 2011, 31(17–18), 3946–3955, DOI: 10.1016/j.applthermaleng.2011.07.045.
 
9.
Demirdzic I., Ivankovic A., O’Dowd N.: Lecture notes for the course Computational Continuum Mechanics (CCM) UCD School of Electrical. Irlandia: University College w Dublinie. Available at: https://www.scribd.com/documen..., (access on 30.04.2023).
 
10.
Duan J., Zhao J., Li X., Panchal S., Fowler M., Yuan X., et al.: Modeling and Analysis of heat dissipation for liquid cooling lithium-Ion batteries. Energies. 2021, 14(14), 4187, DOI: 10.3390/EN14144187.
 
11.
Garg H.P., Adhikari R.S.: Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: Steady-state simulation. Renewable Energy. 1997, 11(3), 363–385, DOI: 10.1016/S0960-1481(97)00007-4.
 
12.
Garg H.P., Adhikari R.S.: Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs. International Journal of Energy Research. 1999, 23(15), 1295–1304, DOI: 10.1002/(SICI)1099-114X(199912)23:15<1295::AID-ER553>3.0.CO;2-T.
 
13.
Hassan A., Wahab A., Qasim A.M., Janjua M.M., Ali A.M., Ali H.M., et al.: Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy. 2020 145, 282–293, DOI: 10.1016/j.renene.2019.05.130.
 
14.
Hauser J.: Podstawy elektrotermii i techniki świetlnej. (Basics of Electrothermal and Lighting Techniques). Wydawnictwo Politechnika Poznańska. Poznań, 2006.
 
15.
Herez A., Hage H.E., Lemenand T., Ramadan M., Khaled M.: Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Solar Energy. 2020, 207, 1321–1347, DOI: 10.1016/j.solener.2020.07.062.
 
16.
Hollick J.C.: Solar cogeneration panels. Renewable energy. 1998, 15(1–4 pt 1), 195–200, DOI: 10.1016/S0960-1481(98)00154-2.
 
17.
Li Q., Avramova M., Jiao Y., Chen P., Yu J., Pu Z., et al.: CFD prediction of critical heat flux in vertical heated tubes with uniform and non-uniform heat flux. Nuclear Engineering and Design. 2018, 326, 403–412, DOI: 10.1016/j.nucengdes.2017.11.009.
 
18.
Li Y., Zhou Z.,Wu W.T.: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plat. Applied Thermal Engineering. 2019, 147, 829–840, DOI: 10.1016/j.applthermaleng.2018.11.009.
 
19.
Madejski P.: Wymiana ciepła. (Heat exchange). Państwowe Wydawnictwo Naukowe. Warszawa-Poznań, 1975.
 
20.
Merkisz J., Bajerlein M., Daszkiewicz P.: The Influence of the Application of Photovoltaic Cells in City Buses to Reduce Fuel Consumption – (CO2) and Exhaust Emissions (HC, PM, and NOx). International Conference on Power and Energy Systems, Lecture Notes in Information Technology. 2012, 13, 106–113.
 
21.
Mikielewicz D., Wais J.: Wybrane zagadnienia projektowania mikrostrugowych wymieników ciepła. (Selected issues of designing micro-jet heat exchangers). Instytut Maszyn Przepływowych PAN w Gdańsku. Gdańsk, 2015.
 
22.
Pang W., Yu H., Zhang Y., Yan H.: Solar photovoltaic based air cooling system for vehicles, Renewable Energy. 2019, 130, 25–31, DOI: 10.1016/j.renene.2018.06.048.
 
23.
Piasecka M., Hożejowska S., Pawińska A., Strąk D.: Heat transfer analysis of a co-current heat exchanger with two rectangular mini-channels. Energies. 2022, 1340, 15(4), 1–18, DOI: 10.3390/en15041340.
 
24.
Piasecka M., Strąk K.: Characteristics of refrigerant boiling heat transfer in rectangular mini-channels during various flow orientations. Energies. 2021, 14(16), 4891, DOI: 10.3390/en14164891.
 
25.
Prakash J.: Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management. 1994, 35(11), 967–972, DOI: 10.1016/0196-8904(94)90027-2.
 
26.
Prasetyo S.D., Prabowo A.R., Arifin Z.: The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology. Heliyon. 2023, 9(2), e13390, DOI: 10.1016/j.heliyon.2023.e13390.
 
27.
Radziemska E.: Performance Analysis of a Photovoltaic-Thermal Integrated System. International Journal of Photoenergy. 2009, 732093, DOI:10.1155/2009/732093.
 
28.
Ratajczak J., Domke K.: Model cieplny ogniw PV i kolektorów. (The thermal model of PV cells and collectors). Electrical Engineering. 2012, 1(70), 291–298.
 
29.
Rockendorf G., Sillmann R., Podlowski L., Litzenburger B.: PV-hybrid and thermoelectric collectors. Solar Energy. 1999, 67(4–6), 227–237, DOI: 10.1016/s0038-092x(00)00075-x.
 
30.
Skoplaki E., Palyvos J.A.: On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy. 2009, 83(5), 614–624, DOI: 10.1016/j.solener.2008.10.008.
 
31.
Skoplaki E., Palyvos J.A.: Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy. 2009, 34(1), 23–29. DOI: 10.1016/j.renene.2008.04.009.
 
32.
Strąk D., Hożejowska S., Pawińska A.: Badania przepływowego wymiennika ciepła z minikanałami. (Research of a flow heat exchanger with mini-channels). Monografia konferencyjna XVI Sympozjum Wymiany Ciepła i Masy: Postępy w badaniach wymiany ciepła i masy. Politechnika Białostocka, Białystok, 2022, 276–286, DOI: 10.24427/978-83-67185-30-1_29.
 
33.
Strąk K., Piasecka M.: Boiling heat transfer during flow of distilled water in an asymmetrically heated rectangular minichannel. EPJ Web of Conferences. 2017, 143, 02116, DOI: 10.1051/epjconf/201714302116.
 
34.
Suman S., Goel A., Kushwah Y.S.: Design Optimization of Battery Thermal Management System for Electric Vehicles. SAE Technical Papers. 2021, DOI: 10.4271/2021-28-0123.
 
35.
Tarabsheh A., Etier I., Fath H., Ghazal A., Morci Y., Asad M., et al.: Performance of photovoltaic cells in photovoltaic thermal (PVT) modules. IET Renewable Power Generation. 2016, 10(7), 1017–1023, DOI: 10.1049/iet-rpg.2016.0001.
 
36.
Waseem M., Sherwani A.F., Suhaib M.: Integration of solar energy in electrical, hybrid, autonomous vehicles: a technological review. SN Applied Sciences. 2019, 1(11), 1459, DOI: 10.1007/s42452-019-1458-4.
 
37.
Widyolar B., Jiang L., Brinkley J., Hota S.K., Ferry J., Diaz G., et al.: Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics. Applied Energy. 2020, 268, 114894, DOI: 10.1016/j.apenergy.2020.114894.
 
38.
Wiśniewski S., Wiśniewski T.S.: Wymiana ciepła. (Heat exchange). Wydawnictwa Naukowo-Techniczne. Warszawa, 2012.
 
 
CITATIONS (1):
1.
Solar photovoltaic/thermal systems applications for electrical vehicle
Hussein Kazem, Miqdam Chaichan, Ali Al-Waeli, K. Sopian
Environment, Development and Sustainability
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top