PL EN
RESEARCH PAPER
Modeling of the ecological condition of the large cities road network
 
More details
Hide details
1
Department of Automotive Engineering, Lviv Polytechnic National University, Ukraine
 
2
Department of Designing and Operation of Machines, Lviv Polytechnic National University, Ukraine
 
3
Department of Operation and Repair of Automotive Vehicles, Lviv Polytechnic National University, Ukraine
 
 
Submission date: 2019-04-25
 
 
Final revision date: 2019-06-17
 
 
Acceptance date: 2019-06-19
 
 
Publication date: 2019-06-28
 
 
Corresponding author
Roman V Zinko   

Department of Automotive Engineering, Lviv Polytechnic National University, 32 Bandera str., Building 6, Room 217, 79013, Lviv, Ukraine
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;84(2):91-101
 
KEYWORDS
TOPICS
ABSTRACT
Recently the extensive growth of the vehicles number in large cities have been observed, which leads to the road network overload. The purpose of current article is to demonstrate the method of mathematical model creation for environmental monitoring at the crossroads. This mathematical model can be used in intelligent transport systems (ITS). The basic parameters for the mathematical model are selected basing on the knowledge structuring in the field of the road network (RN) environmental monitoring. Knowledge structuring about environmental contamination simplifies and demonstrates the choice of the mathematical model basic parameters for RN environmental monitoring. The mathematical model can be implemented by using the cellular automata (CA) theory. The method of creating the RN ecological condition modeling module, which can be used in ITS, is shown on the particular example. The knowledge structuring method in the field of RN state environmental monitoring and its implementation with help of the CA theory are suggested.
REFERENCES (22)
1.
Cantwell M.D., Forman R.T.: Landscape graphs: ecological modelling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology. 1993, 8(4), 239–255, DOI: 10.1007/BF00125131.
 
2.
Catalano M., Galatioto F., Bell M., Namdeo A., Bergantino A.: Improving the prediction of air pollution peak episodes generated by urban transport networks. Environmental science & policy. 2016, 60, 69–83, DOI: 10.1016/j.envsci.2016.03.008.
 
3.
Степанчук О.В.: Методи створення і ведення транспортно-екологічного моніторингу в крупних і найкрупніших містах (на прикладі м. Києва). PhD thesis. Київ. 2004, (in Ukrainian: Stepanchuk O.V.: Methods for creating and maintaining transport and environmental monitoring in large and the largest cities (based on Kyiv). PhD thesis. Kyiv).
 
4.
Дьяков А.Б.: Экологическая безопасность транспортных потоков. М.: Транспорт. 1989, 128, (in Russian: Diakov A.: Ecological safety of transport streaming. Moscow: Transport).
 
5.
Elbir T., Mangir N., Kara M., Simsir S., Eren T., Ozdemir S.: Development of a GISbased decision support system for urban air quality management in city of Istanbul. Atmospheric Environment. 2010, 44(4), 441–454, DOI: 10.1016/j.atmosenv.2009.11.008.
 
6.
Evans M.: Modelling ecological systems in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012, 367(1586), 181–190, DOI: 10.1098/rstb.2011.0172.
 
7.
Forman T.T.: Spatial models as an emerging foundation of road system ecology and a handle for transportation planning and policy, 1999, 119-123, (in Evink G.L., Garrett P., Zeigler D. Berry J.: Proceedings of the International Conference on Wildlife and Transportation. Florida Department of Transportation, Tallahassee, Florida, 1999).
 
8.
Gallagher J.A.: Modelling exercise to examine variations of NOx concentrations on adjacent footpaths in a street canyon: The importance of accounting for wind conditions and fleet composition. Science of the total environment. 2016, 550, 1065–1074, DOI: 10.1016/j.scitotenv.2016.01.096.
 
9.
Hincu G.: Computer assisted evaluation of traffic noise level. Electronic Journal Technical Acoustics. 2003, 19, 1–6.
 
10.
Lelong J., Leclercq L., Defrance J.: Dynamic Assessment of Road Traffic Noise: Elaboration of a Global Model. The 18th International Congress on Acoustics. Japan, 2004.
 
11.
Lozano A. Usero J., Vanderlinden E., Raez J., Contreras J., Navarrete B., et al.: Air quality monitoring network design to control nitrogen dioxide and ozone applied in Granada Spain. Ozone: Science & Engineering. 2011, 33(1), 80–89, DOI: 10.1080/01919512.2011.536741.
 
12.
Lu W.Z., Wang W.J., Wang X.K., Yan S.H., Lam J.C.: Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Environmental Research. 2004, 96(1), 79 –87, DOI: 10.1016/j.envres.2003.11.003.
 
13.
Madadi H., Moradi H., Soffianian H., Salman Mahiny A.: The Application of Traffic Noise Modeling to Define Road Ecological Effect Zone in Natural Habitats of Lorestan Province. International Journal of Automotive Engineering. 2017, 6(2), 69–82, DOI: 10.18869/acadpub.ijae.6.2.69.
 
14.
Маковейчук О.М.: Моделювання транспортних потоків методами клітинкових автоматів. Науковий вісник НЛТУУ: збірник науково-технічних праць. 2007, 17(4), 269–271, (in Ukrainian: Makoveychuk A.: Simulation of traffic flow via methods of cellular machines. Bulletin of National Forestry University: a collection of scientific works).
 
15.
Пеньшин Н.В., Пудовкин В.В., Колдашов А.Н., Ященко А.В.: Организация и безопасность движения. Тамбов: Изд-во Тамб. гос. техн. ун-та. 2006, 96, (in Russian: Penshyn N., Pudovkyn V., Koldashov A., Yaschenko A.: Organization and security of movement. Tambov).
 
16.
Sładkowski A., Pamuła W.: Intelligent Transportation Systems – Problems and Perspectives. Studies in Systems, Decision and Control. Springer International Publishing. 2016, DOI: 10.1007/978-3-319-19150-8.
 
17.
Тоффоли Т., Марголус Н.: Машины клеточных автоматов. М.: Мир. 1991, (in Russian: Toffoli T., Marholus N.D.: Cellular automata machines. Moscow, Mir).
 
18.
Varshney C.K., Singh A.P.: Passive samplers for NOx monitoring: a critical review. The Environmentalist. 2003, 23(2), 127–136, DOI: 10.1023/A:10248836.
 
19.
Veen A.D., Briggs D.J, Collins S., Elliott S., Fischer P., Kingham S. et al.: Mapping urban air pollution using GIS: a regression based approach. International Journal of Geographical Information Science. 2010, 11(7), 699–718, DOI: 10.1080/136588197242158.
 
20.
Vienneau D., de Hoogh K., Briggs D.A.: GIS-based method for modeling air pollution exposures across Europe. Science of the Total Environment. 2009, 408(2), 255–266, DOI: 10.1016/j.scitotenv.2009.09.048.
 
21.
Wasiak M., Kłodawski M., Lewczuk K., Jachimowski R., Szcepański E.: Chosen aspects of simulation model to designing pro-ecological transport system. Journal of KONES Powertrain and Transport. 2014, 21(4), 525–532, DOI: 10.5604/12314005.1130519.
 
22.
Zinko R.: Morphological environment for technical systems investigation: monography. Lviv, Lviv Polytechnic Publishing, 2014.
 
 
CITATIONS (3):
1.
Free access to the road transport market as a condition for the sustainability of road transport functionality in the European Union
Milos Poliak, Jana Tomicova, Juraj Hammer, Pawel Drozdziel
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
2.
Safety Features of the Transport System in the Transition to Industry 4.0
Irina Makarova, Ksenia Shubenkova, Polina Buyvol, Vadim Mavrin, Ilsur Giniyatullin, Kirill Magdin
The Archives of Automotive Engineering – Archiwum Motoryzacji
 
3.
Short-term imputation of missing sound level data using selected computational intelligence methods
Michal Kekez, Leszek Radziszewski, Andrzej Bakowski, Dariusz Kurczynski
2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top