PRACA ORYGINALNA
Fatigue tests and numerical analyses of the PAWO autonomous electric vehicle
Więcej
Ukryj
1
Department of Engineering and Numerical Analysis, Łukasiewicz - Automotive Industry Institute, Polska
Data nadesłania: 14-09-2021
Data ostatniej rewizji: 28-09-2021
Data akceptacji: 30-09-2021
Data publikacji: 30-09-2021
Autor do korespondencji
Krzysztof Andrzej Podkowski
Department of Engineering and Numerical Analysis, Łukasiewicz - Automotive Industry Institute, Jagiellońska 55, 03-301, Warszawa, Polska
The Archives of Automotive Engineering – Archiwum Motoryzacji 2021;93(3):39-58
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The following article presents fatigue testing and FEM numerical analysis of an autonomous electric vehicle, PAWO autonomous operational support platform. The purpose of the study, which was carried out in the ŁUKASIEWICZ – Automotive Industry Institute, was to verify the structure of the platform by forcing in three axes on the position: a table with six degrees of freedom "MAST", as well as conducting fatigue numerical analyses, allowing to determine places critical for fatigue endurance. This will be the starting point for the modification of the structure, and also will allow you to identify places that you need to pay attention to during tests and subsequent operation. The results of these tests allow us to determine critical places due to fatigue strength and possible intervention before starting field tests with a complete vehicle, as well as to detect places that should be noted during tests, inspections and tests, and in development versions of the vehicle.
REFERENCJE (13)
2.
Alfredsson B., Olsson M.: Applying multiaxial fatigue criteria to standing contact fatigue. International Journal of Fatigue. 2001, 23(6), 533–548, DOI: 10.1016/S0142-1123(01)00008-1.
3.
Bathe K.J.: Finite Element Procedures. Englewood Cliffs: Prentice-Hall, USA, 1996.
4.
Bernasconi A.: Efficient algorithms for calculation of shear stress amplitude and amplitude of second invariant of the stress deviator in fatigue criteria applications. International Journal of Fatigue. 2002, 24(6), 649–657, DOI: 10.1016/S0142-1123(01)00181-5.
5.
Bernasconi A., Foletti S., Papadopoulos I.V.: A study on combined torsion and axial load fatigue limit tests with stresses of different frequencies. International Journal of Fatigue. 2008, 30(8) 1430–1440, DOI: 10.1016/j.ijfatigue.2007.10.003.
6.
Mrzygłód M.: Parametryczna optymalizacja konstrukcji pracujących przy obciążeniach wysoko-cyklowych. Dissertation, Cracow University of Technology, Kraków, 2005.
7.
Mrzygłód M., Zieliński A.P.: Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion. Structural and Multidisciplinary Optimization. 2007, 33(2), 161–171, DOI : 10.1007/s00158-006-0045-7.
8.
Mrzygłód M., Zieliński A.P.: Numerical implementation of multiaxial high-cycle fatigue criterion to structural optimization. Journal of Theoretical and Applied Mechanics. 2006, 44(3), 691–712.
9.
Mrzygłód M., Zieliński A.P.: Multiaxial high-cycle fatigue constraints in structural optimization. International Journal of Fatigue. 2007, 29(9-11), 1920–1926, DOI: 10.1016/j.ijfatigue.2007.01.032.
10.
Papadopoulos I.V., Davoli P., Gorla C., Filippini M., Bernasconi A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. International Journal of Fatigue. 1997, 19(3), 219–235, DOI: 10.1016/S0142-1123(96)00064-3.
11.
Podkowski K., Barszcz Z., Seńko J.: FEM (Finite Element Method) Numeric Analyses of the Syrenka S201 Car Model. Proceedings of the 13th International Scientific Conference: Computer Aided Engineering, Lecture Notes in Mechanical Engineering, Poland, 2016, DOI: 10.1007/978-3-319-50938-9_43.
12.
Podkowski K., Okruch Ł., Jasiński P., Stańko-Pająk K.: Strenght numerical analyses of the construction of PAWO autonomous high mobility platform. 2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY, IEEE Publication. Poland, 2020, DOI: 10.1109/automotivesafety47494.2020.9293524.
13.
You B.R., Lee S.B.: A critical review on multiaxial fatigue assessments of Metals. International Journal of Fatigue. 1996, 4(18), 235–244, DOI: 10.1016/0142-1123(96)00002-3.