PL EN
PRACA ORYGINALNA
Dynamic loads on the roof plate of the wheeled carrier during the firing of a 30 mm cannon
 
Więcej
Ukryj
1
Faculty of Mechanical Engineering, Military University of Technology, Polska
 
 
Data nadesłania: 10-03-2023
 
 
Data ostatniej rewizji: 23-03-2023
 
 
Data akceptacji: 24-03-2023
 
 
Data publikacji: 31-03-2023
 
 
Autor do korespondencji
Andrzej Wiśniewski   

Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;99(1):53-65
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
On the battlefield, modern vehicles perform a variety of roles. Transportation is one of the most fundamental. Operating in different terrains, including urban areas, means exposing the crew to different hazards. To increase crew protection, passive and active protection systems are used. On the other hand, in addition to protection, support of the infantry in offensive operations is an equally important activity. The most common solution for medium wheeled vehicles is a manned turret. The weapon is a 30 mm cannon. Nowadays, there is a trend towards installing systems that allow such weapons to be operated remotely. This minimises the exposure of highly trained personnel. This paper presents the results of a numerical study of the dynamic loads on the roof-plate structure of a wheeled armoured personnel carrier resulting from the firing of the vehicle's main armament. It includes the values of the strains and stresses in the upper plate structure and the forces transmitted by the brackets connecting the roof plate to the bottom plate, and an assessment of the risk of using such a system on the safety of the vehicle structure and its crew.
REFERENCJE (36)
1.
Baranowski P., Damaziak, K.: Numerical Simulation of Vehicle–Lighting Pole Crash Tests: Parametric Study of Factors Influencing Predicted Occupant Safety Levels. Materials. 2021, 14(11), 2822, DOI: 10.3390/ma14112822.
 
2.
Belabend S., Paunoiu V., Baroiu N., Khelif R., Iacob I.: Static Structural Analysis Analytical and Numerical of Ball Bearings. IOP Conference Series: Materials Science and Engineering. 2020, 968(1), 012026, DOI: 10.1088/1757-899x/968/1/012026.
 
3.
Borkowski S., Krynke M., Selejdak J.: Evaluation of Carrying Capacity Three–Row Slewing Roller Bearing. Perner’s Contacts. Electronical technical journal of technology, engineering and logistic in transport. 2011, VI(2), 98–105.
 
4.
Dursun T., Büyükcivelek F., Utlu Ç.: A review on the gun barrel vibrations and control for a main battle tank. Defence Technology. 2017, 13, 353–359, DOI : 10.1016/j.dt.2017.05.010.
 
5.
Esen I., Koç M.A.: Dynamic response of a 120 mm smoothbore tank barrel during horizontal and inclined firing positions. Latin American Journal of Solids and Structures. 2015, 12(8), 1462–1486, DOI: 10.1590/1679-78251576.
 
6.
Gupta A.: Evaluation of a fully assembled armored vehicle hull–turret model using computational and experimental modal analyses. Computers & Structures. 1999, 72(1–3), 177–183, DOI: 10.1016/s0045-7949(99)00024-3.
 
7.
Hallquist J.O.: LS-Dyna Theory Manual. Livermore Software Technology Corporation: Livermore, USA, 2006.
 
8.
Hosseinloo A.H., Vahdati N., Yap F.F.: Parametric Shock Analysis of Spade-Less, Lightweight, Wheeled, Military Vehicles Subjected to Cannon Firing Impact: A Feasibility Study of Spade Removal. The International Institute of Acoustics and Vibration. 2013, 18(4), 183–191, DOI: 10.20855/ijav.2013.18.4333.
 
9.
Howle D., Krayterman D., Pritchett J.E., Sorenson R.: Validating a Finite Element Model of a Structure Subjected to Mine Blast with Experimental Modal Analysis. Technical Report. US Army Research Laboratory. ARL-TR-8224, Aberdeen, USA, 2017.
 
10.
Hryciów Z., Małachowski J., Rybak P., Wiśniewski A.: Research of Vibrations of an armoured Personnel Carrier Hull with FE Implementation. Materials. 2021, 14(22), 6807, DOI: 10.3390/ma14226807.
 
11.
Hryciów Z., Rybak P., Gieleta R.: The influence of temperature on the damping characteristic of hydraulic shock absorbers. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2021, 23(2), 346–351, DOI: 10.17531/ein.2021.2.14.
 
12.
Hryciów Z., Rybak P., Wojciechowski M., Wachowiak P., Kalicki B.: Hydropneumatic suspension testing of a wheeled armoured personnel carrier. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2023, 25(2), DOI: 10.17531/ein/162497.
 
13.
Hryciów Z., Wiśniewski A., Rybak P.: Experimental and Numerical Modal Analysis of the Military Vehicle Hull. Advances in Military Technology. 2020, 15(2), 379–391, DOI: 10.3849/aimt.01427.
 
14.
Hua H., Liao Z., Song J.: Vibration reduction and firing accuracy improvement by natural frequency optimization of a machine gun system. Journal of Mechanical Science and Technology. 2015, 29(9), 3635–3643, DOI: 10.1007/s12206-015-0807-5.
 
15.
Jambovane S., Kalsule D., Athavale S.: Validation of FE Models Using Experimental Modal Analysis; SAE Technical Paper. 2001, 2001, 127592, DOI: 10.4271/2001-26-0042.
 
16.
Jamroziak K., Bocian M., Pyka D., Kulisiewicz M.: Numerical Analysis of the Dynamic Impact of a Gun Barrel during Firing. Advances in Intelligent Systems and Computing. 2019, 934, 162–174, DOI: 10.1007/978-3-030-15857-6_17.
 
17.
Johnson G.J., Cook W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics. The Hague, The Netherlands, 19–21April 1983, 541–547.
 
18.
Kania L., Krynke M., Mazanek, E.: A catalogue capacity of slewing bearings. Mechanism and Machine Theory. 2012, 58, 29–45, DOI: 10.1016/j.mechmachtheory.2012.07.012.
 
19.
Kosmol, J.: An extended model of angular bearing - Influence of fitting and pre-deformation. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2019, 21(3), 493–500, DOI: 10.17531/ein.2019.3.16.
 
20.
Krynke M.: Numerical Analysis of Bolts Loading in Slewing Bearing. Czasopismo Techniczne, 2016, Mechanika. 2016, 4-M, 89–94, DOI: 10.4467/2353737XCT.16.237.5986.
 
21.
Li Y., Jiang D.: Strength check of a three-row roller slewing bearing based on a mixed finite element model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017, 231(18), 3393–3400, DOI: 10.1177/0954406216644267.
 
22.
Mackiewicz A., Sławiński G., Niezgoda T., Będziński R.: Numerical Analysis of the Risk of Neck Injuries Caused By IED Explosion under the Vehicle in Military Environments. Acta Mechanica et Automatica. 2016, 10(4), 258–264, DOI: 10.1515/ama-2016-0039.
 
23.
Mazurkiewicz Ł., Małachowski J., Baranowski P.: Optimization of protective panel for critical supporting elements. Composite Structures. 2015, 134, 493–505, DOI: 10.1016/j.compstruct.2015.08.069.
 
24.
Mikulic D.: Design of Demining Machines. Springer, London, UK, 2013.
 
25.
Morris B.: Modal Analysis of the Prototype Heavy Composite Hull (HCH). Research Report. Army Research Laboratory ARL-MR-387: Aberdeen, USA, 1998.
 
26.
Nilsson M.: Constitutive Model for Armox 500T and Armox 600T at Low and Medium Strain Rates. Technical Report. Swedish Defence Research Agency, Stockholm, Sweden, 2003.
 
27.
Park C.Y.: Numerical study on determining design parameters of wheeled armored vehicles. Journal of Mechanical Science and Technology. 2017, 31(12), 5785–5799, DOI: 10.1007/s12206-017-1121-1.
 
28.
Pyka D., Jamroziak K., Blazejewski W., Bocian M.: Calculations with the Finite Element Method during the Design Ballistic Armour. Lecture Notes in Mechanical Engineering. 2017, 451–459, DOI: 10.1007/978-3-319-50938-9_47.
 
29.
Rezvani S.S., Kiasat M.S.: Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core. Archives of Civil and Mechanical Engineering. 2018, 18(4), 1241–1258, DOI: 10.1016/j.acme.2018.03.006.
 
30.
Rusiński E., Czmochowski J., Pietrusiak D.: Problems of steel construction modal models identification. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2012, 14(1), 54–61.
 
31.
Rusinski E., Dragan S., Moczko P., Pietrusiak D.: Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit. Archives of Civil and Mechanical Engineering. 2012, 12(4), 471–476, DOI: 10.1016/j.acme.2012.07.002.
 
32.
Rusiński E., Koziołek S., Jamroziak K.: Quality assurance method for the design and manufacturing process of armoured vehicles. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2009, 43(3), 70–77.
 
33.
Suhaimi K., Risby M., Tan K., Knight V.F., Sohaini R.M., Sheng T.K.: Simulation on the Shock Response of Vehicle Occupant Subjected to Underbelly Blast Loading. Procedia Computer Science. 2016, 80, 1223–1231, DOI: 10.1016/j.procs.2016.05.488.
 
34.
Sławiński G., Malesa P., Świerczewski M.: Analysis Regarding the Risk of Injuries of Soldiers inside a Vehicle during Accidents Caused by Improvised Explosive Devices. Applied Sciences. 2019, 9(19), 4077, DOI: 10.3390/app9194077.
 
35.
Smolnicki T., Rusiński E.: Superelement-Based Modeling of Load Distribution in Large-Size Slewing Bearings. Journal of Mechanical Design. 2007, 129(4), 459–463, DOI: 10.1115/1.2437784.
 
36.
Šulka P., Sapietová A., Dekýš V., Sapieta M.: Static structural analysis of rolling ball bearing. MATEC Web Conference. 2018, 244, 01023, DOI: 10.1051/matecconf/201824401023.
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top