PL EN
RESEARCH PAPER
Assessment of the effect of passenger car wheel unbalance on driving comfort
 
More details
Hide details
1
Faculty of Mechanical Engineering, Military University of Technology, Polska
 
2
-, MAT Dania Sp. Z.o.o., Polska
 
 
Submission date: 2021-12-07
 
 
Final revision date: 2021-12-27
 
 
Acceptance date: 2021-12-27
 
 
Publication date: 2021-12-30
 
 
Corresponding author
Andrzej Wiśniewski   

Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2021;94(4):61-71
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents the results of experimental investigations of the effects of car wheel unbalance on driving safety and comfort. Basic information about types of wheel unbalance, their causes, and effects are included. The test subject was a BMW 3 Series car with rear-wheel drive. A specific unbalance was introduced on the front steered wheels. The vehicle was driven in a straight line on an asphalt road in good condition at speeds between 70 km/h and 140 km/h. During the test runs, acceleration waveforms were recorded from sensors placed on the lower control arm, driver's seat, and steering wheel. The vibration level of the unbalanced wheel increases with the driving speed and with the increase in unbalance. The highest increase in vibration amplitude occurred on the steering wheel at speeds between 100 km/h and 120 km/h. These vibrations have a direct effect on the driver. This is evidenced by negative driver perceptions such as fatigue and driving discomfort. This was also confirmed by the calculated vibration exposure levels. Driving with unbalanced wheels accelerates wear on the tyres, steering, drive, and suspension components of the vehicle.
 
REFERENCES (28)
1.
Chen X., Wang M., Wang W.: Unified Chassis Control of Electric Vehicles Considering Wheel Vertical Vibrations. Sensors. 2021, 21(11), 3931, DOI: 10.3390/s21113931.
 
2.
Craighead I.A.: Sensing tyre pressure, damper condition and wheel balance from vibration measurements. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 1997, 211(4), 257–265, DOI: 10.1243/0954407971526416.
 
3.
Deng Z.X, Li X., Liu T.Q, Zhao S.E: Modeling and suppression of unbalanced radial force for in-wheel motor driving system. Journal of Vibration and Control. 2021, 1–12, 10.1177/10775463211026041.
 
4.
Frej D., Grabski P.: The impact of the unbalanced rear wheel on the vibrating comfort of the child seat. Transportation Research Procedia. 2019, 40, 678–685, DOI: 10.1016/j.trpro.2019.07.096.
 
5.
Hryciów Z., Krasoń W., Wysocki J.: Evaluation of the influence of friction in a multi-leaf spring on the working conditions of a truck driver. Eksploatacja i Niezawodność – Maintenance and Reliability. 2021, 23(3), 422–429, DOI: 10.17531/ein.2021.3.3.
 
6.
ISO 2631: Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration. 1997.
 
7.
ISO 5349: Mechanical Vibration - Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration. 2001.
 
8.
Kowalski P.: Pomiar i ocena drgań mechanicznych w środowisku pracy według nowych przepisów prawnych. Bezpieczeństwo pracy: nauka i praktyka. 2006, 9, 24–26.
 
9.
Leister G.: Passenger Car Tires and Wheels. Springer. 2018, DOI: 10.1007/978-3-319-50118-5.
 
10.
Li X.Y: Kinetic analysis of the Unbalanced masses of wheel Based on ADAMS. Applied Mechanics and Materials. 2014, 494–495, 91–94, DOI: 10.4028/www.scientific.net/AMM.494-495.91.
 
11.
Li Z., Song X., Chen X., Xue H.: Dynamic Characteristics Analysis of the Hub Direct Drive-Air Suspension System from Vertical and Longitudinal Directions. Shock and Vibration. 2021, 2021, 8891860, DOI: 10.1155/2021/8891860.
 
12.
Lu J., Filev D., Johnson, L.: Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors. SAE International Journal of Materials and Manufacturing. 2011, 4(1), 1036–1047, DOI: 10.4271/2011-01-0981.
 
13.
Materiały szkoleniowe, Drgania mechaniczne zagrożenia i profilaktyka, CIOP. https://m.ciop.pl/CIOPPortalWA... (accessed 25.10.2021).
 
14.
Pozzato G., Strada S.C., Tanelli M., Savaresi S.M., Dambach G.: MEMS-Enabled Retrofitting of Automobile Wheel Balancer for Automatic Unbalance Detection. IEEE/ASME Transactions on Mechatronics. 2021, 26(2), 830–840, DOI: 10.1109/TMECH.2020.3004372.
 
15.
Prażnowski K., Brol S., Augustynowicz A.: Identification of static unbalance wheel of passenger car carried out on a road. Solid State Phenomena. 2014, 214, 48–57, DOI: 10.4028/www.scientific.net/SSP.214.48.
 
16.
Prażnowski K., Mamala J.: Classification of the road surface condition on the basis of vibrations of the sprung mass in a passenger car. IOP Conference Series: Materials Science and Engineering. 2016, 148, 012022, DOI: 10.1088/1757-899X/148/1/012022.
 
17.
Rajput R.K.: A Textbook of Automobile Engineering. Laxmi Publications. 2007, 944pp, ISBN 9788170089919.
 
18.
Robens E., Jayaweera S.A.A., Kiefer S.: Balances: Instruments, Manufacturers, History. Springer. 2014, DOI: 10.1007/978-3-642-36447-1.
 
19.
Rozporządzenia Ministra Gospodarki i Pracy z dnia 5 sierpnia 2005 r, w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na hałas lub drgania mechaniczne (Dz, U, 2005, nr 157, poz, 1318).
 
20.
Rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 29 listopada 2002 r, w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy (Dz, U, z 2002 r, Nr 217 poz, 1833).
 
21.
Shin K.K, Bae H.: Real-Time Estimation of Wheel Imbalances for Chassis Prognosis. SAE Technical Paper. 2010, DOI: 10.4271/2010-01-0245.
 
22.
Siegel J.E., Bhattacharyya R., Sarma S., Deshpande, A.: Smartphone-Based Wheel Imbalance Detection. ASME 2015 Dynamic Systems and Control Conference. 2015, 2, DOI: 10.1115/DSCC2015-9716.
 
23.
Taneja S.: Effect of Tyre Unbalance on Performance of Vehicle. International Journal of Mechanical Engineering and Technology. 2020, 11(12), 12–18.
 
24.
Wang Y., Li P., Ren G.: Electric vehicles with in-wheel switched reluctance motors: Coupling effects between road excitation and the unbalanced radial force. Journal of Sound and Vibration. 2016, 372, 69–81, DOI: 10.1016/j.jsv.2016.02.040.
 
25.
Wang Y.Y, Li Y.N, Sun W., Zheng L.: Effect of the unbalanced vertical force of a switched reluctance motor on the stability and the comfort of an in-wheel motor electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2015, 229(12), 1569–1584, DOI: 10.1177/0954407014566438.
 
26.
Weaver, D.: Best Wheel Balancing Methods. https://www.derekweaver.com/le... (accessed 17.12.2022).
 
27.
Zuo S.G, Li D.Q, Mao Y., Deng W.Z.: Longitudinal vibration analysis and suppression of electric wheel system driven by in-wheel motor considering unbalanced magnetic pull. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2019, 233(11), 2729–2745, DOI: 10.1177/0954407018806118.
 
28.
Zuska A., Więckowski D.: The impact of unbalanced wheels and vehicle speed on driving comfort. XI International Science and Technical Conference Automotive Safety. Slovakia, 2018, 1–6, DOI: 10.1109/AUTOSAFE.2018.8373310.
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top