PL EN
PRACA POGLĄDOWA
A review of technologies in the area of production, storage and use of hydrogen in the automotive industry
 
Więcej
Ukryj
1
Department of Transportation and Informatics, University of University of Economics and Innovation in Lublin, Polska
 
2
Department of Technology and Development, Grupa Azoty Zakłady Azotowe Puławy S.A.,, Polska
 
 
Data nadesłania: 06-11-2023
 
 
Data ostatniej rewizji: 12-12-2023
 
 
Data akceptacji: 15-12-2023
 
 
Data publikacji: 28-12-2023
 
 
Autor do korespondencji
Arkadiusz Małek   

Department of Transportation and Informatics, University of University of Economics and Innovation in Lublin, Projektowa 4, 20-209, Lublin, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;102(4):41-67
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Presently, we can learn and read more and more about hydrogen in both traditional and social media. The article answers why there is so much interest in hydrogen recently. It has been recognized by European and global decision-makers as a very promising medium necessary to carry out the climate and energy transformation. The advantages of hydrogen as a fuel and as a medium for storing large amounts of energy over a longer period of time is also presented. In addition, an overview of hydrogen technologies presented at the Hydrogen Technology Expo in Bremen in September 2023 is provided. The state of hydrogen technologies currently available on the market is compared to the latest achievements of scientists described in scientific articles. The aim of the article is to review the technologies available on the market for the production, storage and use of hydrogen as a vehicle fuel. Hydrogen technologies presented at the Hydrogen Expo in Bremen were confronted with the latest scientific achievements described in the latest scientific articles. Thanks to such a confrontation, it is possible to make a rational purchasing decision in the area of selected hydrogen technologies.
REFERENCJE (59)
1.
Alfarizi M.G., Ustolin F., Vatn J., Yin S., Paltrinieri N.: Towards accident prevention on liquid hydrogen: A data-driven approach for releases prediction. Reliability Engineering & System Safety. 2023, 236, 109276, DOI: 10.1016/j.ress.2023.109276.
 
2.
Campari A., Darabi M., Alvaro A., Ustolin F., Paltrinieri N.: A Machine Learning Approach to Predict the Materials Susceptibility to Hydrogen Embrittlement. Chemical Engineering Transactions. 2023, 99, 193–198, DOI: 10.3303/CET2399033.
 
3.
Czelej K., Colmenares J.C., Jabłczyńska K., Ćwieka K., Werner Ł., Gradoń L.: Sustainable hydrogen production by plasmonic thermophotocatalysis. Catalysis Today. 2021, 380, 156–186, DOI: 10.1016/j.cattod.2021.02.004.
 
4.
Ćwieka K., Bojarska Z., Czelej K., Łomot D., Dziegielewski P., Maximenko A., et al.: Zero carbon footprint hydrogen generation by photoreforming of methanol over Cu/TiO2 nanocatalyst. Chemical Engineering Journal. 2023, 474, 145687, DOI: 10.1016/j.cej.2023.145687.
 
5.
Dall’Armi C., Pivetta D., Taccani R.: Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects. Energies. 2023, 16(4), 2022, DOI: 10.3390/en16042022.
 
6.
Dan M.L., Kellenberger A., Duca D., Vaszilcsin N., Craciunescu C.M., Mitelea I., et al.: Corrosion Resistance of AISI 442 and AISI 446 Ferritic Stainless Steels as a Support for PEMWE Bipolar Plates. Materials. 2023, 16(4), 1501, DOI: 10.3390/ma16041501.
 
7.
Danebergs J., Deledda S.: Can hydrogen storage in metal hydrides be economically competitive with compressed and liquid hydrogen storage? A techno-economical perspective for the maritime sector. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.08.313.
 
8.
Dang J., Zhang J., Deng X., Yang S., Liu B., Zhu X., et al.: Hydrogen crossover measurement and durability assessment of high-pressure proton exchange membrane electrolyzer. Journal of Power Sources. 2023, 563, 232776, DOI: 10.1016/j.jpowsour.2023.232776.
 
9.
Di Micco S., Romano F., Jannelli E., Perna A., Minutillo M.: Techno-economic analysis of a multi-energy system for the co-production of green hydrogen, renewable electricity and heat. International Journal of Hydrogen Energy. 2023, 48(81), 31457–31467, DOI: 10.1016/j.ijhydene.2023.04.269.
 
10.
Faqeeh A.H., Symes M.D.: A standard electrolyzer test cell design for evaluating catalysts and cell components for anion exchange membrane water electrolysis. Electrochimica Acta. 2023, 444, 142030, DOI: 10.1016/j.electacta.2023.142030.
 
11.
Fragiacomo P., Genovese M., Piraino F., Massari F., Boroomandnia M.: Analysis of a distributed green hydrogen infrastructure designed to support the sustainable mobility of a heavy-duty fleet. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.08.047.
 
12.
Fragiacomo P., Piraino F., Genovese M., Corigliano O., De Lorenzo G.: Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors. Energies. 2023, 16(15), 5671, DOI: 10.3390/en16155671.
 
13.
Genovese M., Blekhman D., Dray M., Piraino F., Fragiacomo P.: Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method. Energies. 2023, 16(15), 5749, DOI: 10.3390/ en16155749.
 
14.
Genovese M., Cigolotti V., Jannelli E., Fragiacomo P.: Current standards and configurations for the permitting and operation of hydrogen refueling stations. International Journal of Hydrogen Energy. 2023, 48(51), 19357–19371, DOI: 10.1016/j.ijhydene.2023.01.324.
 
15.
Genovese M., Cigolotti V., Jannelli E., Fragiacomo P.: Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications. Energies. 2023, 16(6), 2890, DOI: 10.3390/en16062890.
 
16.
Giacoppo G., Trocino S., Lo Vecchio C., Baglio V., Díez-García M.I., Aricò A.S., et al.: Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production. Energies. 2023, 16(4), 1953, DOI: 10.3390/en16041953.
 
17.
Gianni M., Pietra A., Coraddu A., Taccani R.: Impact of SOFC Power Generation Plant on Carbon Intensity Index (CII) Calculation for Cruise Ships. Journal of Marine Science and Engineering. 2022, 10(10), 1478, DOI: 10.3390/jmse10101478.
 
18.
Ginsberg M.J., Esposito D.V., Fthenakis V.M.: Designing off-grid green hydrogen plants using dynamic polymer electrolyte membrane electrolyzers to minimize the hydrogen production cost. Cell Reports Physical Science. 2023, 4 (10), 101625, DOI: 10.1016/j.xcrp.2023.101625.
 
19.
Haoran C., Xia Y., Wei W., Yongzhi Z., Bo Z., Leiqi Z.: Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.08.324.
 
20.
Iliev I.K., Filimonova A.A., Chichirov A.A., Chichirova N.D., Pechenkin A.V., Vinogradov A.S.: Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs. Energies. 2023, 16(4), 1898, DOI: 10.3390/en16041898.
 
21.
Illes L., Jurkovic M., Kalina T., Sosedova J., Gorzelanczyk P., Stopka O., et al.: Concept and Performance Analysis of Propulsion Units Intended for Distributed Ship Systems. Journal of Marine Science And Engineering. 2022, 10(4), 448, DOI: 10.3390/jmse10040448.
 
22.
Järvinen L., Puranen P., Kosonen A., Ruuskanen V., Ahola J., Kauranen P., et al.: Automized parametrization of PEM and alkaline water electrolyzer polarisation curves. International Journal of Hydrogen Energy. 2022, 47 (75), 31985–32003, DOI: 10.1016/j.ijhydene.2022.07.085.
 
23.
Jin C., Zheng H., Wang L., Liu H., Wang X., Yan M.: Enhancement effect of Ce hydride on hydrogen storage performance of Mg(NH2)2-2LiH. Journal of Alloys and Compounds. 2023, 969, 172247, DOI: 10.1016/j.jallcom.2023.172247.
 
24.
Kim C., Lee Y., Kim K., Lee U.: Implementation of Formic Acid as a Liquid Organic Hydrogen Carrier (LOHC): Techno-Economic Analysis and Life Cycle Assessment of Formic Acid Produced via CO2 Utilization. Catalysts. 2022, 12(10), 1113, DOI: 10.3390/catal12101113.
 
25.
Kovárník R., Staňková M.: Efficiency of the Automotive Industry in the Visegrad Group. LOGI – Scientific Journal on Transport and Logistics. 2023, 14(1), 12–23, DOI: 10.2478/logi-2023-0002.
 
26.
Li N., Lukszo Z., Schmitz J.: An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab. Renewable and Sustainable Energy Reviews. 2023, 181, 113308, DOI: 10.1016/j.rser.2023.113308.
 
27.
Li X., Zhu C., Liu C., Liu Y., Song J., Liu X., et al.: Research on protection methods for 70 MPa on-board Type IV hydrogen storage cylinders under localized fire conditions. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.08.130.
 
28.
Ma N., Zhao W., Wang W., Li X., Zhou H.: Large scale of green hydrogen storage: Opportunities and challenges. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.09.021.
 
29.
Makhsoos A., Kandidayeni M., Pollet B.G., Boulon L.: A perspective on increasing the efficiency of proton exchange membrane water electrolyzers– a review. International Journal of Hydrogen Energy. 2023, 48 (41), 15341–15370, DOI: 10.1016/j.ijhydene.2023.01.048.
 
30.
Małek A., Caban J., Dudziak A., Marciniak A., Ignaciuk P.: A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family. Energies. 2023, 16(13), 5077, DOI: 10.3390/en16135077.
 
31.
Małek A., Taccani R., Kasperek D., Hunicz J.: Optimization of Energy Management in a City Bus Powered by the Hydrogen Fuel Cells. Communications - Scientific Letters of the University of Zilina. 2021, 23(4), E56–E67, DOI: 10.26552/com.C.2021.4.E56-E67.
 
32.
Martinez Lopez V.A., Ziar H., Haverkort J.W., Zeman M., Isabella O.: Dynamic operation of water electrolyzers: A review for applications in photovoltaic systems integration. Renewable and Sustainable Energy Reviews. 2023, 182, 113407, DOI: 10.1016/j.rser.2023.113407.
 
33.
Milewski J., Cwieka K., Szczęśniak A., Szabłowski Ł., Wejrzanowski T., Skibinski J., et al.: Recycling electronic scrap to make molten carbonate fuel cell cathodes. International Journal of Hydrogen Energy. 2023, 48(31), 11831–11843, DOI: 10.1016/j.ijhydene.2021.11.247.
 
34.
Milewski J., Zdeb J., Szczęśniak A., Martsinchyk A., Kupecki J., Dybiński O.: Concept of a solid oxide electrolysis-molten carbonate fuel cell hybrid system to support a power-to-gas installation. Energy Conversion and Management. 2023, 276, 116582, DOI: 10.1016/j.enconman.2022.116582.
 
35.
Ni A., Upadhyay M., Kumar S.S., Uwitonze H., Lim H.: Anode analysis and modelling hydrodynamic behaviour of the multiphase flow field in circular PEM water electrolyzer. International Journal of Hydrogen Energy. 2023, 48 (43), 16176–16183, DOI: 10.1016/j.ijhydene.2023.01.032.
 
36.
Norazahar N., Khan F., Rahmani N., Ahmad A.: Degradation modelling and reliability analysis of PEM electrolyzer. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.07.153.
 
37.
Omeiza L.A., Abdalla A.M., Wei B., Dhanasekaran A., Subramanian Y., Afroze S., Reza M.S., Bakar S.A., Azad A.K.: Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies. 2023, 16(4), 1876, DOI: 10.3390/en16041876.
 
38.
Ordóñez S., Díaz E., Faba L.: Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts. C- Journal of Carbon Research. 2022, 8(1), 7, DOI: 10.3390/c8010007.
 
39.
Perna A., Jannelli E., Di Micco S., Romano F., Minutillo M.: Designing, sizing and economic feasibility of a green hydrogen supply chain for maritime transportation. Energy Conversion and Management. 2023, 278, 116702, DOI: 10.1016/j.enconman.2023.116702.
 
40.
Piela P., Mitzel J., Rosini S., Tokarz W., Valle F., Pilenga A., et al.: Looking Inside Polymer Electrolyte Membrane Fuel Cell Stack Using Tailored Electrochemical Methods. Journal of Electrochemical Energy Conversion and Storage. 2020, 17(3), 4046106, DOI: 10.1115/1.4046106.
 
41.
Pivetta D., Volpato G., Carraro G., Dall’Armi C., Da Lio L., Lazzaretto A., et al.: Optimal decarbonization strategies for an industrial port area by using hydrogen as energy carrier. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j.ijhydene.2023.07.008.
 
42.
Press coverage https://industryemea.com/news/... (access 20.11.2023).
 
43.
Rao P.C., Yoon M.: Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress. Energies. 2020, 13(22), 6040, DOI: 10.3390/en13226040.
 
44.
Richnák P., Gubová, K., Fabianová J.: The Application of Total Cost of Ownership Method to Automotive Industry. LOGI – Scientific Journal on Transport and Logistics. 2020, 11(2), 100–109, DOI: 10.2478/logi-2020-0019.
 
45.
Shahabuddin M., Rhamdhani M.A., Brooks G.A.: Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective. Processes. 2023, 11(7), 2196, DOI: 10.3390/pr11072196.
 
46.
Shi J., Zhu Y., Feng Y., Yang J., Xia C.: A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere. 2023, 14(3), 584, DOI: 10.3390/atmos14030584.
 
47.
Shiva Kumar S., Himabindu V.: Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies. 2019, 2(3), 442–454, DOI: 10.1016/j.mset.2019.03.002.
 
48.
Tomić A.Z., Pivac I., Barbir F.: A review of testing procedures for proton exchange membrane electrolyzer degradation. Journal of Power Sources. 2023, 557, 232569, DOI: 10.1016/j.jpowsour. 2022.232569.
 
49.
Ustolin F., Campari A., Taccani R.: An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector. Journal of Marine Science and Engineering. 2022, 10(9), 1222, DOI: 10.3390/jmse10091222.
 
50.
Vasyliv B., Kulyk V., Duriagina Z., Kovbasiuk T.: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material. Crystals. 2023, 13(6), 944, DOI: 10.3390/cryst13060944.
 
51.
Vidales A.G., Millan N.C., Bock C.: Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chemical Engineering Research and Design. 2023, 194, 636–648, DOI: 10.1016/j.cherd.2023.05.004.
 
52.
Xu G., Dong X., Xue B., Huang J., Wu J., Cai W.: Recent Approaches to Achieve High Temperature Operation of Nafion Membranes. Energies. 2023, 16(4), 1565, DOI: 10.3390/en16041565.
 
53.
Xu Y., Cai S., Chi B., Tu Z.: Technological limitations and recent developments in a solid oxide electrolyzer cell: A review. International Journal of Hydrogen Energy. 2023, DOI: 10.1016/j. ijhydene.2023.08.314.
 
54.
Yang R., Mohamed A., Kim K.: Optimal design and flow-field pattern selection of proton exchange membrane electrolyzers using artificial intelligence. Energy. 2023, 264, 126135, DOI: 10.1016/j. energy.2022.126135.
 
55.
Ye M., Rong L., Ma X., Yang W.: Numerical Optimization of Triple-Phase Components in Order-Structured Cathode Catalyst Layer of a Proton Exchange Membrane Fuel Cell. Energies. 2023, 16(4), 1623, DOI: 10.3390/en16041623.
 
56.
Zappia M.I., Mastronardi V., Bellani S., Zuo Y., Bianca G., Gabatel L., et al.: Graphene vs. carbon black supports for Pt nanoparticles: Towards next-generation cathodes for advanced alkaline electrolyzers. Electrochimica Acta. 2023, 462, 142696, DOI: 10.1016/j.electacta.2023.142696.
 
57.
Zhao D., Xia Z., Guo M., He Q., Xu Q., Li X., Ni M.: Capacity optimization and energy dispatch strategy of hybrid energy storage system based on proton exchange membrane electrolyzer cell. Energy Conversion and Management. 2022, 272, 116366, DOI: 10.1016/j.enconman.2022.116366.
 
58.
Zheng Y., Huang C., Tan J., You S., Zong Y., Træholt C.: Off-grid wind/hydrogen systems with multi-electrolyzers: Optimized operational strategies. Energy Conversion and Management. 2023, 295, 117622, DOI: 10.1016/j.enconman.2023.117622.
 
59.
Zhou Y., Xia Z., Liu X., Deng Z., Fu X., Kupecki J., et al.: Online energy management optimization of hybrid energy storage microgrid with reversible solid oxide cell: A model-based study. Journal of Cleaner Production. 2023, 423, 138663, DOI: 10.1016/j.jclepro.2023.138663.
 
 
CYTOWANIA (2):
1.
Probabilistic Analysis of Low-Emission Hydrogen Production from a Photovoltaic Carport
Arkadiusz Małek, Agnieszka Dudziak, Jacek Caban, Jonas Matijošius
Applied Sciences
 
2.
Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs
Arkadiusz Małek, Andrzej Marciniak, Tomasz Bednarczyk
Sustainability
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top